C------------------------------------------------------------------------------ SUBROUTINE TRSTLP (N,M,A,B,RHO,DX,IFULL,IACT,Z,ZDOTA,VMULTC, 1 SDIRN,DXNEW,VMULTD,IPRINT) IMPLICIT DOUBLE PRECISION (A-H,O-Z) DOUBLE PRECISION TEMP DIMENSION A(N,*),B(*),DX(*),IACT(*),Z(N,*),ZDOTA(*), 1 VMULTC(*),SDIRN(*),DXNEW(*),VMULTD(*) C C This subroutine calculates an N-component vector DX by applying the C following two stages. In the first stage, DX is set to the shortest C vector that minimizes the greatest violation of the constraints C A(1,K)*DX(1)+A(2,K)*DX(2)+...+A(N,K)*DX(N) .GE. B(K), K=2,3,...,M, C subject to the Euclidean length of DX being at most RHO. If its length is C strictly less than RHO, then we use the resultant freedom in DX to C minimize the objective function C -A(1,M+1)*DX(1)-A(2,M+1)*DX(2)-...-A(N,M+1)*DX(N) C subject to no increase in any greatest constraint violation. This C notation allows the gradient of the objective function to be regarded as C the gradient of a constraint. Therefore the two stages are distinguished C by MCON .EQ. M and MCON .GT. M respectively. It is possible that a C degeneracy may prevent DX from attaining the target length RHO. Then the C value IFULL=0 would be set, but usually IFULL=1 on return. C C In general NACT is the number of constraints in the active set and C IACT(1),...,IACT(NACT) are their indices, while the remainder of IACT C contains a permutation of the remaining constraint indices. Further, Z is C an orthogonal matrix whose first NACT columns can be regarded as the C result of Gram-Schmidt applied to the active constraint gradients. For C J=1,2,...,NACT, the number ZDOTA(J) is the scalar product of the J-th C column of Z with the gradient of the J-th active constraint. DX is the C current vector of variables and here the residuals of the active C constraints should be zero. Further, the active constraints have C nonnegative Lagrange multipliers that are held at the beginning of C VMULTC. The remainder of this vector holds the residuals of the inactive C constraints at DX, the ordering of the components of VMULTC being in C agreement with the permutation of the indices of the constraints that is C in IACT. All these residuals are nonnegative, which is achieved by the C shift RESMAX that makes the least residual zero. C C Initialize Z and some other variables. The value of RESMAX will be C appropriate to DX=0, while ICON will be the index of a most violated C constraint if RESMAX is positive. Usually during the first stage the C vector SDIRN gives a search direction that reduces all the active C constraint violations by one simultaneously. C IF (IPRINT .EQ. 3) THEN print *, ' ' print *, 'BEFORE trstlp:' PRINT *, ' **DX = ', (DX(I),I=1,N) PRINT *, ' **IACT = ', (IACT(I),I=1,M+1) PRINT *, 'M,N,RHO,IFULL =', M, N, RHO, IFULL PRINT *, ' **A = ', ((A(I,K),I=1,N),K=1,M+1) PRINT *, ' **B = ', (B(I),I=1,M) PRINT *, ' **Z = ', ((Z(I,K),I=1,N),K=1,N) PRINT *, ' **ZDOTA = ', (ZDOTA(I),I=1,N) PRINT *, ' **VMULTC = ', (VMULTC(I),I=1,M+1) PRINT *, ' **SDIRN = ', (SDIRN(I),I=1,N) PRINT *, ' **DXNEW = ', (DXNEW(I),I=1,N) PRINT *, ' **VMULTD = ', (VMULTD(I),I=1,M+1) PRINT *, ' ' END IF ICON=0 NACTX=0 RESOLD=0 IFULL=1 MCON=M NACT=0 RESMAX=0.0d0 DO 20 I=1,N DO 10 J=1,N 10 Z(I,J)=0.0d0 Z(I,I)=1.0d0 20 DX(I)=0.0d0 IF (M .GE. 1) THEN DO 30 K=1,M IF (B(K) .GT. RESMAX) THEN RESMAX=B(K) ICON=K END IF 30 CONTINUE DO 40 K=1,M IACT(K)=K 40 VMULTC(K)=RESMAX-B(K) END IF IF (IPRINT .EQ. 3) THEN PRINT *, ' 1. VMULTC = ', (VMULTC(I),I=1,M+1) END IF IF (RESMAX .EQ. 0.0d0) GOTO 480 DO 50 I=1,N 50 SDIRN(I)=0.0d0 C C End the current stage of the calculation if 3 consecutive iterations C have either failed to reduce the best calculated value of the objective C function or to increase the number of active constraints since the best C value was calculated. This strategy prevents cycling, but there is a C remote possibility that it will cause premature termination. C 60 OPTOLD=0.0d0 ICOUNT=0 70 IF (MCON .EQ. M) THEN OPTNEW=RESMAX ELSE OPTNEW=0.0d0 DO 80 I=1,N 80 OPTNEW=OPTNEW-DX(I)*A(I,MCON) END IF IF (IPRINT .EQ. 3) THEN PRINT *, ' ICOUNT, OPTNEW, OPTOLD = ', ICOUNT, OPTNEW, OPTOLD END IF IF (ICOUNT .EQ. 0 .OR. OPTNEW .LT. OPTOLD) THEN OPTOLD=OPTNEW NACTX=NACT ICOUNT=3 ELSE IF (NACT .GT. NACTX) THEN NACTX=NACT ICOUNT=3 ELSE ICOUNT=ICOUNT-1 IF (ICOUNT .EQ. 0) GOTO 490 END IF C C If ICON exceeds NACT, then we add the constraint with index IACT(ICON) to C the active set. Apply Givens rotations so that the last N-NACT-1 columns C of Z are orthogonal to the gradient of the new constraint, a scalar C product being set to zero if its nonzero value could be due to computer C rounding errors. The array DXNEW is used for working space. C IF (ICON .LE. NACT) GOTO 260 KK=IACT(ICON) DO 90 I=1,N 90 DXNEW(I)=A(I,KK) TOT=0.0D0 K=N 100 IF (K .GT. NACT) THEN SP=0.0d0 SPABS=0.0d0 DO 110 I=1,N TEMP=Z(I,K)*DXNEW(I) SP=SP+TEMP 110 SPABS=SPABS+DABS(TEMP) ACCA=SPABS+0.1d0*DABS(SP) ACCB=SPABS+0.2d0*DABS(SP) IF ((SPABS .GE. ACCA) .OR. (ACCA .GE. ACCB)) SP=0.0D0 IF (TOT .EQ. 0.0D0) THEN TOT=SP ELSE KP=K+1 TEMP=DSQRT(SP*SP+TOT*TOT) ALPHA=SP/TEMP BETA=TOT/TEMP TOT=TEMP DO 120 I=1,N TEMP=ALPHA*Z(I,K)+BETA*Z(I,KP) Z(I,KP)=ALPHA*Z(I,KP)-BETA*Z(I,K) 120 Z(I,K)=TEMP END IF K=K-1 GOTO 100 END IF C C Add the new constraint if this can be done without a deletion from the C active set. C IF (IPRINT .EQ. 3) THEN PRINT *, '*TOT, NACT, ICON = ', TOT, NACT, ICON END IF IF (TOT .NE. 0.0d0) THEN NACT=NACT+1 ZDOTA(NACT)=TOT VMULTC(ICON)=VMULTC(NACT) VMULTC(NACT)=0.0d0 GOTO 210 END IF C C The next instruction is reached if a deletion has to be made from the C active set in order to make room for the new active constraint, because C the new constraint gradient is a linear combination of the gradients of C the old active constraints. Set the elements of VMULTD to the multipliers C of the linear combination. Further, set IOUT to the index of the C constraint to be deleted, but branch if no suitable index can be found. C RATIO=-1.0d0 K=NACT 130 ZDOTV=0.0d0 ZDVABS=0.0d0 DO 140 I=1,N TEMP=Z(I,K)*DXNEW(I) ZDOTV=ZDOTV+TEMP 140 ZDVABS=ZDVABS+DABS(TEMP) ACCA=ZDVABS+0.1d0*DABS(ZDOTV) ACCB=ZDVABS+0.2d0*DABS(ZDOTV) IF (ZDVABS .LT. ACCA .AND. ACCA .LT. ACCB) THEN TEMP=ZDOTV/ZDOTA(K) IF (TEMP .GT. 0.0d0 .AND. IACT(K) .LE. M) THEN TEMPA=VMULTC(K)/TEMP IF (RATIO .LT. 0.0d0 .OR. TEMPA .LT. RATIO) THEN RATIO=TEMPA IOUT=K END IF END IF IF (K .GE. 2) THEN KW=IACT(K) DO 150 I=1,N 150 DXNEW(I)=DXNEW(I)-TEMP*A(I,KW) END IF VMULTD(K)=TEMP ELSE VMULTD(K)=0.0d0 END IF K=K-1 IF (K .GT. 0) GOTO 130 IF (IPRINT .EQ. 3) THEN PRINT *, ' 1. VMULTD = ', (VMULTD(I),I=1,M+1) END IF IF (RATIO .LT. 0.0d0) GOTO 490 C C Revise the Lagrange multipliers and reorder the active constraints so C that the one to be replaced is at the end of the list. Also calculate the C new value of ZDOTA(NACT) and branch if it is not acceptable. C DO 160 K=1,NACT 160 VMULTC(K)=DMAX1(0.0d0,VMULTC(K)-RATIO*VMULTD(K)) IF (IPRINT .EQ. 3) THEN PRINT *, ' 2. VMULTC = ', (VMULTC(I),I=1,M+1) END IF IF (ICON .LT. NACT) THEN ISAVE=IACT(ICON) VSAVE=VMULTC(ICON) K=ICON 170 KP=K+1 KW=IACT(KP) SP=0.0d0 DO 180 I=1,N 180 SP=SP+Z(I,K)*A(I,KW) TEMP=SQRT(SP*SP+ZDOTA(KP)**2) ALPHA=ZDOTA(KP)/TEMP BETA=SP/TEMP ZDOTA(KP)=ALPHA*ZDOTA(K) ZDOTA(K)=TEMP DO 190 I=1,N TEMP=ALPHA*Z(I,KP)+BETA*Z(I,K) Z(I,KP)=ALPHA*Z(I,K)-BETA*Z(I,KP) 190 Z(I,K)=TEMP IACT(K)=KW VMULTC(K)=VMULTC(KP) K=KP IF (K .LT. NACT) GOTO 170 IACT(K)=ISAVE VMULTC(K)=VSAVE END IF TEMP=0.0d0 DO 200 I=1,N 200 TEMP=TEMP+Z(I,NACT)*A(I,KK) IF (TEMP .EQ. 0.0d0) GOTO 490 ZDOTA(NACT)=TEMP VMULTC(ICON)=0.0d0 VMULTC(NACT)=RATIO C C Update IACT and ensure that the objective function continues to be C treated as the last active constraint when MCON>M. C 210 IACT(ICON)=IACT(NACT) IACT(NACT)=KK IF (MCON .GT. M .AND. KK .NE. MCON) THEN K=NACT-1 SP=0.0d0 DO 220 I=1,N 220 SP=SP+Z(I,K)*A(I,KK) TEMP=SQRT(SP*SP+ZDOTA(NACT)**2) ALPHA=ZDOTA(NACT)/TEMP BETA=SP/TEMP ZDOTA(NACT)=ALPHA*ZDOTA(K) ZDOTA(K)=TEMP DO 230 I=1,N TEMP=ALPHA*Z(I,NACT)+BETA*Z(I,K) Z(I,NACT)=ALPHA*Z(I,K)-BETA*Z(I,NACT) 230 Z(I,K)=TEMP IACT(NACT)=IACT(K) IACT(K)=KK TEMP=VMULTC(K) VMULTC(K)=VMULTC(NACT) VMULTC(NACT)=TEMP END IF C C If stage one is in progress, then set SDIRN to the direction of the next C change to the current vector of variables. C IF (MCON .GT. M) GOTO 320 KK=IACT(NACT) TEMP=0.0d0 DO 240 I=1,N 240 TEMP=TEMP+SDIRN(I)*A(I,KK) TEMP=TEMP-1.0d0 TEMP=TEMP/ZDOTA(NACT) DO 250 I=1,N 250 SDIRN(I)=SDIRN(I)-TEMP*Z(I,NACT) GOTO 340 C C Delete the constraint that has the index IACT(ICON) from the active set. C 260 IF (ICON .LT. NACT) THEN ISAVE=IACT(ICON) VSAVE=VMULTC(ICON) K=ICON 270 KP=K+1 KK=IACT(KP) SP=0.0d0 DO 280 I=1,N 280 SP=SP+Z(I,K)*A(I,KK) TEMP=SQRT(SP*SP+ZDOTA(KP)**2) ALPHA=ZDOTA(KP)/TEMP BETA=SP/TEMP ZDOTA(KP)=ALPHA*ZDOTA(K) ZDOTA(K)=TEMP DO 290 I=1,N TEMP=ALPHA*Z(I,KP)+BETA*Z(I,K) Z(I,KP)=ALPHA*Z(I,K)-BETA*Z(I,KP) 290 Z(I,K)=TEMP IACT(K)=KK VMULTC(K)=VMULTC(KP) K=KP IF (K .LT. NACT) GOTO 270 IACT(K)=ISAVE VMULTC(K)=VSAVE END IF NACT=NACT-1 C C If stage one is in progress, then set SDIRN to the direction of the next C change to the current vector of variables. C IF (MCON .GT. M) GOTO 320 TEMP=0.0d0 DO 300 I=1,N 300 TEMP=TEMP+SDIRN(I)*Z(I,NACT+1) DO 310 I=1,N 310 SDIRN(I)=SDIRN(I)-TEMP*Z(I,NACT+1) GO TO 340 C C Pick the next search direction of stage two. C 320 TEMP=1.0d0/ZDOTA(NACT) DO 330 I=1,N 330 SDIRN(I)=TEMP*Z(I,NACT) C C Calculate the step to the boundary of the trust region or take the step C that reduces RESMAX to zero. The two statements below that include the C factor 1.0E-6 prevent some harmless underflows that occurred in a test C calculation. Further, we skip the step if it could be zero within a C reasonable tolerance for computer rounding errors. C 340 DD=RHO*RHO SD=0.0d0 SS=0.0d0 DO 350 I=1,N IF (ABS(DX(I)) .GE. 1.0E-6*RHO) DD=DD-DX(I)**2 SD=SD+DX(I)*SDIRN(I) 350 SS=SS+SDIRN(I)**2 IF (DD .LE. 0.0d0) GOTO 490 TEMP=SQRT(SS*DD) IF (ABS(SD) .GE. 1.0E-6*TEMP) TEMP=SQRT(SS*DD+SD*SD) STPFUL=DD/(TEMP+SD) STEP=STPFUL IF (MCON .EQ. M) THEN ACCA=STEP+0.1d0*RESMAX ACCB=STEP+0.2d0*RESMAX IF (STEP .GE. ACCA .OR. ACCA .GE. ACCB) GOTO 480 STEP=DMIN1(STEP,RESMAX) END IF C C Set DXNEW to the new variables if STEP is the steplength, and reduce C RESMAX to the corresponding maximum residual if stage one is being done. C Because DXNEW will be changed during the calculation of some Lagrange C multipliers, it will be restored to the following value later. call s360_380(DXNEW,DX,STEP,SDIRN,N,M,MCON,RESMAX, 1 NACT,IACT,B,A,RESOLD) C C Set VMULTD to the VMULTC vector that would occur if DX became DXNEW. A C device is included to force VMULTD(K)=0.0 if deviations from this value C can be attributed to computer rounding errors. First calculate the new C Lagrange multipliers. C K=NACT 390 ZDOTW=0.0d0 ZDWABS=0.0d0 DO 400 I=1,N TEMP=Z(I,K)*DXNEW(I) ZDOTW=ZDOTW+TEMP 400 ZDWABS=ZDWABS+ABS(TEMP) ACCA=ZDWABS+0.1d0*ABS(ZDOTW) ACCB=ZDWABS+0.2d0*ABS(ZDOTW) IF (ZDWABS .GE. ACCA .OR. ACCA .GE. ACCB) ZDOTW=0.0d0 VMULTD(K)=ZDOTW/ZDOTA(K) IF (K .GE. 2) THEN KK=IACT(K) DO 410 I=1,N 410 DXNEW(I)=DXNEW(I)-VMULTD(K)*A(I,KK) K=K-1 GOTO 390 END IF IF (MCON .GT. M) VMULTD(NACT)=DMAX1(0.0d0,VMULTD(NACT)) IF (IPRINT .EQ. 3) THEN PRINT *, ' 2. VMULTD = ', (VMULTD(I),I=1,M+1) END IF C C Complete VMULTC by finding the new constraint residuals. C DO 420 I=1,N 420 DXNEW(I)=DX(I)+STEP*SDIRN(I) IF (MCON .GT. NACT) THEN KL=NACT+1 DO 440 K=KL,MCON KK=IACT(K) SUM=RESMAX-B(KK) SUMABS=RESMAX+DABS(B(KK)) DO 430 I=1,N TEMP=A(I,KK)*DXNEW(I) SUM=SUM+TEMP 430 SUMABS=SUMABS+DABS(TEMP) ACCA=SUMABS+0.1*DABS(SUM) ACCB=SUMABS+0.2*DABS(SUM) IF (SUMABS .GE. ACCA .OR. ACCA .GE. ACCB) SUM=0.0 440 VMULTD(K)=SUM END IF IF (IPRINT .EQ. 3) THEN PRINT *, ' 3. VMULTD = ', (VMULTD(I),I=1,M+1) END IF C C Calculate the fraction of the step from DX to DXNEW that will be taken. C RATIO=1.0d0 ICON=0 C EPS = 2.2E-16 DO 450 K=1,MCON IF (VMULTD(K) .GT. -EPS .AND. VMULTD(K) .LT. EPS) VMULTD(K)=0.0D0 IF (VMULTD(K) .LT. 0.0D0) THEN TEMP=VMULTC(K)/(VMULTC(K)-VMULTD(K)) IF (TEMP .LT. RATIO) THEN RATIO=TEMP ICON=K END IF END IF 450 CONTINUE C C Update DX, VMULTC and RESMAX. C TEMP=1.0d0-RATIO DO 460 I=1,N 460 DX(I)=TEMP*DX(I)+RATIO*DXNEW(I) DO 470 K=1,MCON 470 VMULTC(K)=DMAX1(0.0d0,TEMP*VMULTC(K)+RATIO*VMULTD(K)) IF (IPRINT .EQ. 3) THEN PRINT *, ' 3. VMULTC = ', (VMULTC(I),I=1,M+1) END IF IF (MCON .EQ. M) RESMAX=RESOLD+RATIO*(RESMAX-RESOLD) IF (IPRINT .EQ. 3) THEN PRINT *, ' RESMAX, MCON, M, ICON = ', 1 RESMAX, MCON, M, ICON END IF C C If the full step is not acceptable then begin another iteration. C Otherwise switch to stage two or end the calculation. C IF (ICON .GT. 0) GOTO 70 IF (STEP .EQ. STPFUL) GOTO 500 480 MCON=M+1 ICON=MCON IACT(MCON)=MCON VMULTC(MCON)=0.0d0 GOTO 60 C C We employ any freedom that may be available to reduce the objective C function before returning a DX whose length is less than RHO. C 490 IF (MCON .EQ. M) GOTO 480 IFULL=0 500 CONTINUE IF (IPRINT .EQ. 3) THEN print *, ' ' print *, 'AFTER trstlp:' PRINT *, ' **DX = ', (DX(I),I=1,N) PRINT *, ' **IACT = ', (IACT(I),I=1,M+1) PRINT *, 'M,N,RHO,IFULL =', M, N, RHO, IFULL PRINT *, ' **A = ', ((A(I,K),I=1,N),K=1,M+1) PRINT *, ' **B = ', (B(I),I=1,M) PRINT *, ' **Z = ', ((Z(I,K),I=1,N),K=1,N) PRINT *, ' **ZDOTA = ', (ZDOTA(I),I=1,N) PRINT *, ' **VMULTC = ', (VMULTC(I),I=1,M+1) PRINT *, ' **SDIRN = ', (SDIRN(I),I=1,N) PRINT *, ' **DXNEW = ', (DXNEW(I),I=1,N) PRINT *, ' **VMULTD = ', (VMULTD(I),I=1,M+1) PRINT *, ' ' END IF C 500 RETURN END subroutine s360_380(DXNEW,DX,STEP,SDIRN,N,M,MCON,RESMAX, 1 NACT,IACT,B,A,RESOLD) IMPLICIT DOUBLE PRECISION (A-H,O-Z) DIMENSION A(N,*),B(*),DX(*),IACT(*), SDIRN(*),DXNEW(*) DO 360 I=1,N 360 DXNEW(I)=DX(I)+STEP*SDIRN(I) IF (MCON .EQ. M) THEN RESOLD=RESMAX RESMAX=0.0d0 DO 380 K=1,NACT KK=IACT(K) TEMP=B(KK) DO 370 I=1,N 370 TEMP=TEMP-A(I,KK)*DXNEW(I) RESMAX=DMAX1(RESMAX,TEMP) 380 CONTINUE END IF end