C ***************************************************************** C ***************************************************************** subroutine comphapp(n,m,rho,equatn) implicit none C SCALAR ARGUMENTS integer m,n C ARRAY ARGUMENTS logical equatn(m) double precision rho(m) C This subroutine computes an approximation H of the Hessian of the C Augmented Lagrangian following a very simple idea: "discard the C second order terms and then correct the remaining matrix in order C to satisfy a secant equation". C C Hence, H takes the form C C H = B + S + rho A^t A, C C where S is the spectral correction of (rho A^t A) and B is C the BFGS correction of (S + rho A^t A). More specifically, C C S = hlspg I, C C where C C hlspg = max(lspgmi, min(lspgma, s^t (y - rho A^t A s) / s^t s)), C C D = S + rho A^t A, C C and C C B = [ y y ^t / ( y^t s ) ] - [ D s ( D s )^t / ( s^t D s ) ]. C C Note that this subroutine does not compute matrix H explicitly, C but computes some quantities that will be used later to compute C the product of H by a vector p. C C The quantities computed by this subroutine are: C C (a) hlspg = s^t (y - rho A^t A s) / (s^t s) C C (b) hds = D s = ( hlspg I + rho A^t A ) s, and C C (c) hstds = . include "dim.par" include "algconst.par" include "graddat.inc" include "sydat.inc" include "happdat.inc" C LOCAL SCALARS integer i,j double precision ats C ------------------------------------------------------------------ C Compute hds = rho A^t A s C ------------------------------------------------------------------ do i = 1,n hds(i) = 0.0d0 end do do j = 1,m if ( equatn(j) .or. dpdc(j) .gt. 0.0d0 ) then C COMPUTE THE INNER PRODUCT ats = 0.0d0 do i = jcsta(j),jcsta(j) + jclen(j) - 1 ats = ats + jcval(i) * s(jcvar(i)) end do ats = ats * rho(j) C ADD rho * ats * a do i = jcsta(j),jcsta(j) + jclen(j) - 1 hds(jcvar(i)) = hds(jcvar(i)) + ats * jcval(i) end do end if end do hstds = 0.0d0 do i = 1,n hstds = hstds + s(i) * hds(i) end do C ------------------------------------------------------------------ C Compute hlspg = s^t (y - rho A^t A s) / (s^t s) C ------------------------------------------------------------------ if ( sty - hstds .le. 0.0d0 ) then hlspg = lspgmi else hlspg = max( lspgmi, min( (sty - hstds) / sts, lspgma ) ) end if do i = 1,n hds(i) = hds(i) + hlspg * s(i) end do hstds = hstds + hlspg * sts end C ***************************************************************** C ***************************************************************** subroutine applyhapp(n,m,rho,equatn,goth,p,hp) implicit none C SCALAR ARGUMENTS logical goth integer m,n C ARRAY ARGUMENTS logical equatn(m) double precision hp(n),p(n),rho(m) C This subroutine computes the product of the matrix computed by C subroutine comphapp times vector p. include "dim.par" include "machconst.inc" include "graddat.inc" include "sydat.inc" include "itetyp.inc" include "happdat.inc" C LOCAL SCALARS integer i,j double precision atp,c1,c2,ptds,pty C ------------------------------------------------------------------ C Compute Hessian approximation C ------------------------------------------------------------------ if ( .not. goth ) then goth = .true. call comphapp(n,m,rho,equatn) end if C ------------------------------------------------------------------ C Compute ( hlspg I ) p C ------------------------------------------------------------------ do i = 1,n hp(i) = hlspg * p(i) end do C ------------------------------------------------------------------ C Add ( rho A^T A ) p C ------------------------------------------------------------------ do j = 1,m if ( equatn(j) .or. dpdc(j) .gt. 0.0d0 ) then C COMPUTE THE INNER PRODUCT atp = 0.0d0 do i = jcsta(j),jcsta(j) + jclen(j) - 1 atp = atp + jcval(i) * p(jcvar(i)) end do atp = atp * rho(j) C ADD rho * atp * a do i = jcsta(j),jcsta(j) + jclen(j) - 1 hp(jcvar(i)) = hp(jcvar(i)) + atp * jcval(i) end do end if end do C ------------------------------------------------------------------ C Add B p, C where B = [ y y ^t / ( y^t s ) ] - [ D s ( D s )^t / ( s^t D s ) ] C ------------------------------------------------------------------ if ( sameface .and. sty .gt. macheps12 * seucn * yeucn ) then pty = 0.0d0 ptds = 0.0d0 do i = 1,n pty = pty + p(i) * y(i) ptds = ptds + p(i) * hds(i) end do c1 = pty / sty c2 = ptds / hstds do i = 1,n hp(i) = hp(i) + c1 * y(i) - c2 * hds(i) end do end if end C ***************************************************************** C ***************************************************************** subroutine comphpre(n,m,rho,equatn) implicit none C SCALAR ARGUMENTS integer m,n C ARRAY ARGUMENTS logical equatn(m) double precision rho(m) C Consider the preconditioner C C P = Q + E + diag(rho A^t A) C C for matrix C C H = B + S + rho A^t A, C C where E is the spectral correction of diag(rho A^t A) and Q is C the BFGS correction of (E + diag(rho A^t A)), while S and B are C the spectral and BFGS corrections of matrix (rho A^t A), C respectively. C C This subroutine computes: C C (a) pdiag = diag(rho A^t A), C C (b) plspg such that E = plspg I, C C (c) psmdy = s - D^-1 y, where D = E + diag(rho A^t A), and C C (d) the inner product psmdty = . C C These quantities will be used later, in subroutine applyp, to C compute z = P^{-1} r. include "dim.par" include "machconst.inc" include "algconst.par" include "graddat.inc" include "sydat.inc" include "itetyp.inc" include "hpredat.inc" C LOCAL SCALARS integer i,j double precision sttmp C ------------------------------------------------------------------ C Compute diag( rho A^t A ) C ------------------------------------------------------------------ do i = 1,n pdiag(i) = 0.0d0 end do do j = 1,m if ( equatn(j) .or. dpdc(j) .gt. 0.0d0 ) then do i = jcsta(j),jcsta(j) + jclen(j) - 1 pdiag(jcvar(i)) = + pdiag(jcvar(i)) + rho(j) * jcval(i) ** 2 end do end if end do C ------------------------------------------------------------------ C Compute plspg = s^t (y - diag( rho A^t A ) s) / (s^t s) C ------------------------------------------------------------------ sttmp = 0.0d0 do i = 1,n sttmp = sttmp + pdiag(i) * s(i) ** 2 end do if ( sty - sttmp .le. 0.0d0 ) then plspg = lspgmi else plspg = max( lspgmi, min( ( sty - sttmp ) / sts, lspgma ) ) end if C ------------------------------------------------------------------ C Compute the BFGS correction Q of ( E + diag( rho A^t A ) ) C C Q = [ (s - D^-1 y) s^t + s (s - D^-1 y)^t ] / s^t y - C [ s s^t ] / (s^t y)^2, C C where D = ( E + diag( rho A^t A ) ) C ------------------------------------------------------------------ if ( sameface .and. sty .gt. macheps12 * seucn * yeucn ) then psmdyty = 0.0d0 do i = 1,n psmdy(i) = s(i) - y(i) / ( plspg + pdiag(i) ) psmdyty = psmdyty + psmdy(i) * y(i) end do end if end C ***************************************************************** C ***************************************************************** subroutine applyhpre(n,m,rho,equatn,gotp,r,z) implicit none C SCALAR ARGUMENTS logical gotp integer m,n C ARRAY ARGUMENTS logical equatn(m) double precision r(n),rho(m),z(n) C This subroutine computes the product of the inverse of the matrix C computed by subroutine comphpre times vector r, i.e., z = P^{-1} r. include "dim.par" include "machconst.inc" include "sydat.inc" include "itetyp.inc" include "hpredat.inc" C LOCAL SCALARS integer i double precision c1,c2,psmdytr,str C ------------------------------------------------------------------ C Compute P C ------------------------------------------------------------------ if ( .not. gotp ) then gotp = .true. call comphpre(n,m,rho,equatn) end if C ------------------------------------------------------------------ C Compute ( E + diag( rho A^T A ) )^{-1} r C ------------------------------------------------------------------ do i = 1,n z(i) = r(i) / ( plspg + pdiag(i) ) end do C ------------------------------------------------------------------ C Add Q^{-1} r, where C C Q^{-1} = [ (s - D^-1 y) s^t + s (s - D^-1 y)^t ] / s^t y - C [ s s^t ] / (s^t y)^2 C C and D = ( E + diag( rho A^T A ) ) C ------------------------------------------------------------------ if ( sameface .and. sty .gt. macheps12 * seucn * yeucn ) then str = 0.0d0 psmdytr = 0.0d0 do i = 1,n str = str + s(i) * r(i) psmdytr = psmdytr + psmdy(i) * r(i) end do c1 = str / sty c2 = psmdytr / sty - psmdyty * str / sty ** 2 do i = 1,n z(i) = z(i) + c1 * psmdy(i) + c2 * s(i) end do end if end