* SUBROUTINE MXDPGF ALL SYSTEMS 89/12/01 * PORTABILITY : ALL SYSTEMS * 89/12/01 LU : ORIGINAL VERSION * * PURPOSE : * FACTORIZATION A+E=L*D*TRANS(L) OF A DENSE SYMMETRIC POSITIVE DEFINITE * MATRIX A+E WHERE D AND E ARE DIAGONAL POSITIVE DEFINITE MATRICES AND * L IS A LOWER TRIANGULAR MATRIX. IF A IS SUFFICIENTLY POSITIVE * DEFINITE THEN E=0. * * PARAMETERS : * II N ORDER OF THE MATRIX A. * RU A(N*(N+1)/2) ON INPUT A GIVEN DENSE SYMMETRIC (USUALLY POSITIVE * DEFINITE) MATRIX A STORED IN THE PACKED FORM. ON OUTPUT THE * COMPUTED FACTORIZATION A+E=L*D*TRANS(L). * IO INF AN INFORMATION OBTAINED IN THE FACTORIZATION PROCESS. IF * INF=0 THEN A IS SUFFICIENTLY POSITIVE DEFINITE AND E=0. IF * INF<0 THEN A IS NOT SUFFICIENTLY POSITIVE DEFINITE AND E>0. IF * INF>0 THEN A IS INDEFINITE AND INF IS AN INDEX OF THE * MOST NEGATIVE DIAGONAL ELEMENT USED IN THE FACTORIZATION * PROCESS. * RU ALF ON INPUT A DESIRED TOLERANCE FOR POSITIVE DEFINITENESS. ON * OUTPUT THE MOST NEGATIVE DIAGONAL ELEMENT USED IN THE * FACTORIZATION PROCESS (IF INF>0). * RO TAU MAXIMUM DIAGONAL ELEMENT OF THE MATRIX E. * * METHOD : * P.E.GILL, W.MURRAY : NEWTON TYPE METHODS FOR UNCONSTRAINED AND * LINEARLY CONSTRAINED OPTIMIZATION, MATH. PROGRAMMING 28 (1974) * PP. 311-350. * SUBROUTINE MXDPGF(N,A,INF,ALF,TAU) DOUBLE PRECISION ALF,TAU INTEGER INF,N DOUBLE PRECISION A(*) DOUBLE PRECISION BET,DEL,GAM,RHO,SIG,TOL INTEGER I,IJ,IK,J,K,KJ,KK,L L = 0 INF = 0 TOL = ALF * * ESTIMATION OF THE MATRIX NORM * ALF = 0.0D0 BET = 0.0D0 GAM = 0.0D0 TAU = 0.0D0 KK = 0 DO 20 K = 1,N KK = KK + K BET = MAX(BET,ABS(A(KK))) KJ = KK DO 10 J = K + 1,N KJ = KJ + J - 1 GAM = MAX(GAM,ABS(A(KJ))) 10 CONTINUE 20 CONTINUE BET = MAX(TOL,BET,GAM/N) * DEL = TOL*BET DEL = TOL*MAX(BET,1.0D0) KK = 0 DO 60 K = 1,N KK = KK + K * * DETERMINATION OF A DIAGONAL CORRECTION * SIG = A(KK) IF (ALF.GT.SIG) THEN ALF = SIG L = K END IF GAM = 0.0D0 KJ = KK DO 30 J = K + 1,N KJ = KJ + J - 1 GAM = MAX(GAM,ABS(A(KJ))) 30 CONTINUE GAM = GAM*GAM RHO = MAX(ABS(SIG),GAM/BET,DEL) IF (TAU.LT.RHO-SIG) THEN TAU = RHO - SIG INF = -1 END IF * * GAUSSIAN ELIMINATION * A(KK) = RHO KJ = KK DO 50 J = K + 1,N KJ = KJ + J - 1 GAM = A(KJ) A(KJ) = GAM/RHO IK = KK IJ = KJ DO 40 I = K + 1,J IK = IK + I - 1 IJ = IJ + 1 A(IJ) = A(IJ) - A(IK)*GAM 40 CONTINUE 50 CONTINUE 60 CONTINUE IF (L.GT.0 .AND. ABS(ALF).GT.DEL) INF = L RETURN END